Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.181
1.
Indian J Hematol Blood Transfus ; 40(2): 289-296, 2024 Apr.
Article En | MEDLINE | ID: mdl-38708160

Reliable indicators that can predict drug responsiveness in primary immune thrombocytopenia (ITP) patients are urgent. We aimed to establish a reference interval of percentage of immature platelet fraction (IPF%) and absolute immature platelet count (A-IPC), and assess their efficacy in discriminating ITP patients from controls, especially their predictive value for responsiveness to drug treatment. We retrospectively studied 72 treatment-naive adult patients with ITP who received Dexamethasone monotherapy or combination therapy. Baseline (pretreatment) information was collected from medical records. Reference intervals for A-IPC and IPF% were established based on controls and their effectiveness in discriminating ITP patients from controls was assessed. Predictive value of pretreatment IPF% and A-IPC at four co-primary endpoints of treatment response in patients were investigated. The 95% reference intervals for A-IPC and IPF% were (2.7-15.6) × 109/L and 1.2%-7.3%, respectively. Both A-IPC and IPF% had excellent discrimination ability for ITP patients from controls. It showed highly statistically significant differences in pretreatment A-IPC for predicting treatment response at day 7 between responders and non-responders, but not at days 14, 21 and 28. Pretreatment A-IPC had the higher area under the ROC curve with a cut-off of 0.86 than that of IPF% with a cut-off of 14.5% in predicting the treatment response in ITP patients at day 7. Pretreatment A-IPC exhibited acceptable predictive power and could be a promising predictor of response to short-term Dexamethasone monotherapy or combination therapy at day 7 in ITP patients.

2.
Front Psychol ; 15: 1333012, 2024.
Article En | MEDLINE | ID: mdl-38725950

Introduction: This study investigates the mechanisms linking students' perceived teacher support with math anxiety, focusing on the mediating roles of the teacher-student relationship and mathematics self-efficacy. Methods: The research was conducted with 401 fifth-grade students in China, utilizing scales for Students' Perceived Teacher Support, Teacher-Student Relationship, Math Self-Efficacy, and Math Anxiety. Results: Findings revealed that student-perceived math teacher support, teacher-student relationship, and math self-efficacy were all significantly negatively correlated with math anxiety. It was notably found that student-perceived math teacher support influenced math anxiety through the chain mediation of teacher-student relationship and math self-efficacy. Additionally, the effect of students' perceived emotional support from math teachers on math anxiety, mediated by teacher-student relationship intimacy, was significant only among male students. Discussion: These results underscore the importance of fostering positive teacher-student interactions and enhancing self-efficacy to reduce math anxiety among primary school students. The gender-specific findings regarding emotional support and relationship intimacy highlight the need for tailored strategies in addressing math anxiety.

3.
Adv Mater ; : e2402322, 2024 May 08.
Article En | MEDLINE | ID: mdl-38718226

Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. We propose an anti-tumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Further, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the anti-tumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented. This article is protected by copyright. All rights reserved.

4.
Article En | MEDLINE | ID: mdl-38719166

OBJECTIVE: To investigate the effects of physiotherapeutic scoliosis-specific exercises (PSSE) on coronal, horizontal, and sagittal deformities of the spine in adolescent idiopathic scoliosis (AIS) as well as how curve severity, intervention duration, and intervention type could modify these effects. DATA SOURCES: Data sources included the PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases, searched from their inception to September 5, 2023. STUDY SELECTION: Clinical controlled trials reporting the effects of PSSE on the Cobb angle, angle of trunk rotation (ATR), thoracic kyphosis (TK), or lumbar lordosis (LL) in AIS patients aged 10 to 18 years. The experimental groups received PSSE; the control groups received standard care (observation or bracing) or conventional exercise such as core stabilization exercise, pilates, PNF, and other non-specific exercise. DATA EXTRACTION: Two researchers independently extracted key information from eligible studies. The quality of the studies was assessed using the Cochrane Handbook version 5.1.0 risk of bias assessment and the JBI Center for Evidence-Based Health Care (2016) of quasi-experimental research authenticity assessment tool. The level and certainty of evidence was rated according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The protocol for this study was registered in PROSPERO (CRD42023404996). DATA SYNTHESIS: Twelve randomized controlled trials (RCTs) and five non-RCTs (NRCTs) were meta-analyzed separately. The results indicated that compared with other non-surgical management, PSSE significantly improved the Cobb angle, ATR, and TK, whereas the LL improvement was not statistically significant. Additionally, the efficacy of PSSE on Cobb angle was not significant in patients with curve severity ≥30° compared with controls. Nevertheless, the pooled effect of PSSE on Cobb angle was not significantly modified by intervention duration and intervention type, and on ATR was not significantly modified by intervention duration. The overall quality of evidence according to GRADE was moderate to low for RCT and very low for NRCT. CONCLUSIONS: PSSE exhibited positive benefits on the Cobb angle, ATR, and TK in patients with AIS compared to other non-surgical therapies. In addition, the effectiveness of PSSE may be independent of intervention duration and intervention type, but may be influenced by the initial Cobb angle. However, more RCTs are needed in the future to validate the efficacy of PSSE in moderate AIS with a mean Cobb ≥30°. Current evidence is limited by inconsistent control group interventions and small sample size of the studies.

5.
Biotechnol J ; 19(5): e2400014, 2024 May.
Article En | MEDLINE | ID: mdl-38719614

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Aspergillus niger , Fermentation , Malates , Metabolic Engineering , NADP , Aspergillus niger/metabolism , Aspergillus niger/genetics , Malates/metabolism , Metabolic Engineering/methods , NADP/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 622-630, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646749

Soil nitrogen and phosphorus are two key elements limiting tree growth in subtropical areas. Understanding the regulation of soil microorganisms on nitrogen and phosphorus nutrition is beneficial to reveal maintenance mechanism of soil fertility in plantations. We analyzed the characteristics of soil nitrogen and phosphorus fractions, soil microbial community composition and function, and their relationship across three stands of two-layered Cunninghumia lanceolata + Phoebe bournei with different ages (4, 7 and 11 a) and the pure C. lanceolata plantation. The results showed that the contents of most soil phosphorus fractions increased with increasing two-layered stand age. The increase in active phosphorus fractions with increasing stand age was dominated by the inorganic phosphorus (9.9%-159.0%), while the stable phosphorus was dominated by the organic phosphorus (7.1%-328.4%). The content of soil inorganic and organic nitrogen also increased with increasing two-layered stand age, with NH4+-N and acid hydrolyzed ammonium N contents showing the strongest enhancement, by 152.9% and 80.2%, respectively. With the increase of stand age, the composition and functional groups of bacterial and fungal communities were significantly different, and the relative abundance of some dominant microbial genera (such as Acidothermus, Saitozyma and Mortierella) increased. The relative abundance of phosphorus solubilization and mineralization function genes, nitrogen nitrification function and aerobic ammonia oxidation function genes tended to increase. The functional taxa of fungi explained 48.9% variation of different phosphorus fractions. The conversion of pure plantations to two-layered mixed plantation affected soil phosphorus fractions transformation via changing the functional groups of saprophytes (litter saprophytes and soil saprophytes). Changes in fungal community composition explained 45.0% variation of different nitrogen fractions. Some key genera (e.g., Saitozyma and Mortierella) play a key role in promoting soil nitrogen transformation and accumulation. Therefore, the conversion of pure C. lanceolata plantation to two-layered C. lanceolata + P. bournei plantation was conducive to improving soil nitrogen and phosphorus availability. Bacteria and fungi played important roles in the transformation process of soil nitrogen and phosphorus forms, with greater contribution of soil fungi.


Nitrogen , Phosphorus , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/analysis , Nitrogen/metabolism , Soil/chemistry , Cunninghamia/growth & development , China , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism
7.
Int Ophthalmol ; 44(1): 176, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619629

PURPOSE: Conventional diagnosis of primary open angle glaucoma (POAG) needs a combination of ophthalmic examinations. An efficient assay is urgently needed for a timely POAG diagnosis. We aim to explore differential expressions of circulating microRNAs (miRNA) and provide novel miRNA biomarkers for POAG diagnosis. METHODS: A total of 180 POAG patients and 210 age-related cataract (ARC) patients were enrolled. We collected aqueous humor (AH) and plasma samples from the recruited patients. The expressions of candidate miRNAs were measured using quantitative real time polymerase chain reaction. The diagnostic ability of candidate miRNAs was analyzed by receiver operating characteristic curve. RESULTS: The expressions of miR-21-5p and miR-29b-3p were downregulated significantly in AH and plasma of POAG and miR-24-3p expression was significantly increased in AH and plasma of POAG, comparing with those of ARC. A three-miRNA panel was constructed by a binary logistic regression. And the panel could differentiate between POAG and ARC with an area under the curve of 0.8867 (sensitivity = 78.0%, specificity = 83.3%) in aqueous humor and 0.7547 (sensitivity = 73.8%, specificity = 81.2%) in plasma. Next, we verified the three-miRNA panel working as a potential diagnostic biomarker stable and reliable. At last, we identified related function and regulation pathways in vitro. CONCLUSIONS: In conclusion, we built and identified a circulating three-miRNA panel as a potential diagnostic biomarker for POAG. It may be developed into an efficient assay and help improve the POAG diagnosis in the future.


Circulating MicroRNA , Glaucoma, Open-Angle , MicroRNAs , Humans , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/genetics , MicroRNAs/genetics , Aqueous Humor , Biomarkers
8.
Front Vet Sci ; 11: 1383801, 2024.
Article En | MEDLINE | ID: mdl-38601914

The objective of this study was to investigate the protective effect of Crataegus pinnatifida polysaccharide (CPP) on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The findings demonstrated that CPP improved free fatty acid (FFA)-induced lipid accumulation in HepG2 cells and effectively reduced liver steatosis and epididymal fat weight in NAFLD mice, as well as decreased serum levels of TG, TC, AST, ALT, and LDL-C. Furthermore, CPP exhibited inhibitory effects on the expression of fatty acid synthesis genes FASN and ACC while activating the expression of fatty acid oxidation genes CPT1A and PPARα. Additionally, CPP reversed disturbances in intestinal microbiota composition caused by HFD consumption. CPP decreased the firmicutes/Bacteroidetes ratio, increased Akkermansia abundance, and elevated levels of total short-chain fatty acid (SCFA) content specifically butyric acid and acetic acid. Our results concluded that CPP may intervene in the development of NAFLD by regulating of intes-tinal microbiota imbalance and SCFAs production. Our study highlights that CPP has a potential to modulate lipid-related pathways via alterations to gut microbiome composition thereby ex-erting inhibitory effects on obesity and NAFLD development.

9.
Angew Chem Int Ed Engl ; : e202404886, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38563659

The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.

10.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621945

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Diabetic Nephropathies , Vascular Endothelial Growth Factor A , Rats , Male , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Ultrafiltration , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Fibrosis , Hypoxia , Signal Transduction , RNA, Messenger/metabolism
11.
Adv Sci (Weinh) ; : e2401515, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654624

Self-powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual-response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper-like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open-circuit voltage of 0.927 V, a short-circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes' rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.

12.
Pestic Biochem Physiol ; 200: 105836, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582598

The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.


Insecticides , Moths , Oryza , Animals , Larva/genetics , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Pupa , Moths/metabolism , Oryza/metabolism
13.
Neurosurgery ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619238

BACKGROUND AND OBJECTIVES: Venous hypertensive myelopathy (VHM), mainly induced by the spinal dural arteriovenous fistula, is a congestive spinal cord injury that currently has no appropriate animal model available in preclinical research. METHODS: Sprague Dawley rats (280-320 g) were used. The rats were divided into 3 groups: (1) Group 1, which underwent renal artery-dorsal spinal venous bypass (AVB group); (2) Group 2, which underwent renal artery-dorsal spinal venous bypass and drainage vein stenosis (AVB/VS group); and (3) Control group, with T13 dorsal vein ligation. The success of the model was assessed using Doppler ultrasound and 7.0-T magnetic resonance imaging. Transmission electron microscopy, histochemistry, proteomics, and western blot analysis were used to evaluate ultrastructural, pathological, and molecular features in the spinal cord and cerebrospinal fluid (CSF). RESULTS: The success rate of the arteriovenous bypass was 100% at 5 days and 83% at 2 weeks. The locomotor assessment showed decreased lower extremity strength in the AVB/VS group (P = .0067), whereas unremarkable changes were found in the AVB and Control groups. Histochemical staining suggested a 2-fold expansion of the dorsal spinal vein in the AVB/VS group, which was lower than that in the AVB group (P < .05); however, the former displayed greater myelin and neuronal damage (P < .05) and slight dilatation of the central canal (P > .05). Proteomics analysis revealed that the complement and coagulation cascade pathways were upregulated in the CSF of AVB/VS rats, whereas the C3 level was elevated both in the CSF and bilateral spinal cord. Furthermore, overexpression of C3, ITGB2, and CD9 in the spinal cord was confirmed by immunoblotting. CONCLUSION: These findings suggest that the AVB/VS model can effectively mimic the clinical and molecular characteristics of VHM. Furthermore, they suggest that impaired deep intramedullary venous drainage is the key reason for the VHM.

14.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600044

Two new triterpene fatty acid esters, 3ß-palmityloxy-12,27-cyclofriedoolean-14-en-11α-ol (1) and 3ß-palmityloxy-19α-hydroxyursane (2), together with 3ß-hydroxy-11-oxo-olean-12-enyl palmitate (3) were isolated from the potent anti-inflammatory active fraction of the petroleum ether-soluble part of Cirsium setosum ethanol extract. Compound 1 was found to be a rare 12,27-cyclopropane triterpenoid. Their structures were determined through spectral data analysis combined with literature reports. Furthermore, in vitro experiment, compounds 1-3 exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-activated mouse RAW264.7 macrophages.

15.
Redox Biol ; 72: 103158, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631121

Exposure to PM2.5 is correlated with cardiac remodeling, of which cardiac hypertrophy is one of the main clinical manifestations. Ferroptosis plays an important role in cardiac hypertrophy. However, the potential mechanism of PM2.5-induced cardiac hypertrophy through ferroptosis remains unclear. This study aimed to explore the molecular mechanism of cardiac hypertrophy caused by PM2.5 and the intervention role of MitoQ involved in this process. The results showed that PM2.5 could induce cardiac hypertrophy and dysfunction in mice. Meanwhile, the characteristics of ferroptosis were observed, such as iron homeostasis imbalance, lipid peroxidation, mitochondrial damage and abnormal expression of key molecules. MitoQ treatment could effectively mitigate these alternations. After treating human cardiomyocyte AC16 with PM2.5, ferroptosis activator (Erastin) and inhibitor (Fer-1), it was found that PM2.5 could promote ferritinophagy and lead to lipid peroxidation, mitochondrial dysfunction as well as the accumulation of intracellular and mitochondrial labile iron. Subsequently, mitophagy was activated and provided an additional source of labile iron, enhancing the sensitivity of AC16 cells to ferroptosis. Furthermore, Fer-1 alleviated PM2.5-induced cytotoxicity and iron overload in the cytoplasm and mitochondria of AC16 cells. It was worth noting that during the process of PM2.5 caused ferroptosis, abnormal iron metabolism mediated the activation of ferritinophagy and mitophagy in a temporal order. In addition, NCOA4 knockdown reversed the iron homeostasis imbalance and lipid peroxidation caused by PM2.5, thereby alleviating ferroptosis. In summary, our study found that iron homeostasis imbalance-mediated the crosstalk of ferritinophagy and mitophagy played an important role in PM2.5-induced ferroptosis and cardiac hypertrophy.


Autophagy , Cardiomegaly , Ferroptosis , Homeostasis , Iron , Myocytes, Cardiac , Particulate Matter , Cardiomegaly/metabolism , Cardiomegaly/etiology , Cardiomegaly/pathology , Animals , Mice , Iron/metabolism , Autophagy/drug effects , Humans , Particulate Matter/adverse effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Lipid Peroxidation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line
16.
Int J Biol Macromol ; : 131805, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38677673

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.

17.
Org Lett ; 26(17): 3536-3540, 2024 May 03.
Article En | MEDLINE | ID: mdl-38683189

An organophosphorus catalytic method for the synthesis of substituted 2-amidopyridines is reported. The method employs a small-ring organophosphorus-based catalyst and a hydrosilane reductant to drive the conversion of ketoximes and pyridine-N-oxides into 2-amidopyridines through sequential Beckmann rearrangement followed by [2,3]-sigmatropic rearrangement. The readily available ketoximes could be activated to nitrilium ions in PIII/PV redox catalysis and could efficiently participate in the domino reaction of pyridine-N-oxides, thus providing various substituted 2-amidopyridines in moderate to excellent yields. This presented strategy features excellent functional group tolerance and a broad substrate scope.

18.
Bioresour Technol ; 400: 130652, 2024 May.
Article En | MEDLINE | ID: mdl-38575096

The primary objective of this study is to explore the application of a deep eutectic solvent, synthesized from lactic acid and choline chloride, in combination with a pre-treatment involving ZSM-5 catalytic fast pyrolysis, aimed at upgrading the quality of bio-oil. Characterization results demonstrate a reduction in lignin content post-treatment, alongside a significant decrease in carboxyls and carbonyls, leading to an increase in the C/O ratio and noticeable enhancement in crystallinity. During catalytic fast pyrolysis experiments, the pre-treatment facilitates the production of oil fractions, achieving yields of 54.53% for total hydrocarbons and 39.99% for aromatics hydrocarbons under optimized conditions. These findings validate the positive influence of the deep eutectic solvent pre-treatment combined with ZSM-5 catalytic fast pyrolysis on the efficient production of bio-oil and high-value chemical derivatives. .


Biofuels , Biomass , Deep Eutectic Solvents , Plant Oils , Polyphenols , Pyrolysis , Zeolites , Catalysis , Zeolites/chemistry , Deep Eutectic Solvents/chemistry , Lignin/chemistry , Choline/chemistry , Solvents/chemistry
19.
BMC Med ; 22(1): 153, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609953

BACKGROUND: Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. METHODS: From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. RESULTS: In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. CONCLUSIONS: The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. TRIAL REGISTRATION: We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.


Artificial Intelligence , Thyroid Neoplasms , Humans , Lymphatic Metastasis/diagnostic imaging , Prospective Studies , Retrospective Studies , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Neoplasms/diagnostic imaging
20.
Angew Chem Int Ed Engl ; : e202405763, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38607321

Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD-COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 µmol g-1 h-1 in O2 and air) than TBC-COF with hcb topology through the O2-O2⋅--H2O2, O2-O2⋅--O2 1-H2O2, and H2O-H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅- generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O2 1, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high-performance photocatalysts for H2O2 production by topological structure modulation.

...